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Abstract
There is a growing need to uncover biomarkers of ionizing radiation exposure that leads to a better understanding of how 
exposures take place, including dose type, rate, and time since exposure. As one of the first organs to be exposed to external 
sources of ionizing radiation, skin is uniquely positioned in terms of model systems for radiation exposure study. The simul-
taneous evolution of both MS-based -omics studies, as well as in vitro 3D skin models, has created the ability to develop a far 
more holistic understanding of how ionizing radiation affects the many interconnected biomolecular processes that occur in 
human skin. However, there are a limited number of studies describing the biomolecular consequences of low-dose ionizing 
radiation to the skin. This review will seek to explore the current state-of-the-art technology in terms of in vitro 3D skin 
models, as well as track the trajectory of MS-based -omics techniques and their application to ionizing radiation research, 
specifically, the search for biomarkers within the low-dose range.
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Introduction

Understanding skin's response to ionizing radiation has 
important implications for radiation therapy and radiological 
protection. The physiological response to ionizing radiation, 
particularly in the context of medical procedures and UV 
irradiation has been well documented and reviewed [1–6]. 
However, the advent of modern -omics pipelines has ush-
ered in a new age of low-dose radiation (LDR) research. 

This review endeavors to evaluate the suitability of in vitro 
human skin models for mass spectrometry-based radiation 
biomarker discovery. Much of what is assumed about LDR 
exposure is extrapolated from higher-dose studies; there is 
a growing need to employ modern -omics tools to evaluate 
biochemical changes in response to LDR.

Ionizing radiation (IR) damage to biological systems 
largely depends on the type of radiation (α, β, γ, X-ray, n), 
the energy associated with each type of emission, and the 
amount of time a cell/tissue/etc. is irradiated. Each type 
of radioactive particle has an associated penetration depth 
(Fig. 1) and amount of energy transferred to a material 
called the linear energy transfer (LET, keV/μm). Cellular 
damage from ionizing radiation can result from either the 
direct impact of particles and/or the generation of reac-
tive oxygen/nitrogen species (ROS/RNS) that ultimately 
alters biomolecules. The field of radiation biology largely 
uses absorbed dose (Gray, Gy), or the amount of energy (J) 
absorbed by a unit of biological mass (kg), to describe the 
amount of radiation a tissue receives. It is generally rec-
ognized that the relative biological effectiveness (RBE) is 
a more representative (though still incomplete) metric that 
accounts for a multiplicative weighting factor dependent on 
the LET determined by the radiation type [7, 8]. For exam-
ple, neutron particles have a high LET and long penetration 
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depth increasing the RBE, whereas beta particles have a low 
LET. Effective dose (Sieverts, Sv) takes into account tissue 
weighting factors and encompasses the stochastic effects of 
radiation [9]. These concepts are important with respect to 
irradiating in vitro skin models for three reasons; (1) the 
field of radiobiology does not use a unified metric for how 
much radiation is applied to a sample and for in vitro sam-
ples, where there is not an accurate weighting factor, these 
units are used inappropriately, (2) careful consideration must 
be made to dosimetry when the geometry of the samples 
is unique, and (3) in low-dose radiation studies the error 
associated with the dose each technical replicate receives 
needs to be defined. To the last point, Monte Carlo N-Par-
ticle Transport Code (MCNP) and similar techniques can 
calculate the dose received by a particular region of tissue 
in a radiation field and should be employed for in vitro cell/
tissue studies [10–12]. For the purposes of this review, we 
will limit our discussions to absorbed dose (Gy) as a unify-
ing metric, defining LDR as less than 200 mGy.

The integumentary system, specifically the skin, serves 
many functions, such as protection, regulation, homeosta-
sis, and sensation [13–15]. As one of the largest organs 
of the human body, skin serves as the body’s first line of 
defense from a variety of environmental onslaughts (i.e., 
infectious organisms, radiation, etc.). Structurally the skin 
is quite complex, and its cellular composition is even more 
diverse (Fig. 2). Briefly, human skin has three main lay-
ers: (1) the outermost epidermis, composed of the stratum 
corneum, granular cell layer and the spinous layer, (2) the 
dermis, composed of the basal cell layer containing colla-
gen/elastin fibers, sebaceous and sweat glands, nerves, and 
hair follicles, and vasculature, and (3) the sub-cutaneous 
tissue or hypodermis made of largely adipose tissue. The 
stratum corneum and epidermis have six major cell types: 

Langerhans, keratinocytes, melanocytes, Merkel cells, den-
dritic epidermal T cells, and CD8 + T cells. The dermis is 
more complex with macrophages, fibroblasts, plasmacytoid 
dendritic cells (pDC), dermal dendritic cells, mast cells, 
neutrophils, skin innate lymphoid cells, and γδ T cells. The 
need for a model that best recapitulates this complex biol-
ogy (including immune cell response) while also preserv-
ing longevity and phenotype is paramount for understanding 
human-relevant drug and insult (e.g., radiation) toxicity and 
associated mechanisms of action.

Criteria for model selection

Any non-traditional research model will need to be demon-
strated as fit for the intended purpose, with an understanding 
of the benefits and limitations. Thus, the goal in this review 
is to understand the capabilities of different 3D skin models 
in meeting the objectives of responding to ionizing radiation 
in a similar manner to animal or even human models. Deter-
mination of this is dependent on multiple factors including 
specificity, sensitivity, durability, and reproducibility. Model 
Specificity is defined as how interrelated the associated bio-
markers are to intact human skin. Does it have the right 
markers in the right relative amounts? Do signaling cascades 
proceed as if they were native? Sensitivity can be greater or 
less than human skin, but the level of sensitivity needs to 
be defined for the model relative to human skin. Durability 
is defined as the ability to noninvasively sample repeatedly, 
and for commercial models their ability to be shipped with-
out major physiological changes. Reproducibility is defined 
as the inter- and intra-variability between the models and 
donors (for biopsy models).

Fig. 1   Common types of ionizing radiation, along with their associ-
ated depths of penetration. While alpha-particles have a high LET 
they are stopped by the first few layers of skin or thin paper. High-
energy beta particles can penetrate through several cm of human skin 

but can be shielded by thin aluminum or plastic. X-ray and gamma-
rays have much higher penetration depths being stopped by lead or 
iron shielding. Neutrons have the highest penetration depth only 
being attenuated by thick concrete or water
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To mimic the complex biology and physiology found in 
the skin, various companies have employed a variety of dif-
ferent approaches to solve the challenges a realistic in vitro 
skin model presents [13]. These approaches involve many 
challenges: the incorporation of the hypodermis, dermis and 
epidermis, maturated barrier function and an active immune 
component for more realistic modeling of allergy and other 
immune-related disease states [16]. Other technical chal-
lenges are related to culturing keratinocytes in large quanti-
ties and maintaining them in an undifferentiated state [17]. 
The commercial skin mimetic models discussed here have 
been validated by various regulatory bodies as alternatives 
to animal skin for testing corrosion and irritation (Table 1). 
These models have applications in in vitro testing as opposed 
to translational medicine (i.e., grafting). One general advan-
tage of reconstructed skin models is in assessing the depth of 
permeation of compounds and radiation treatments because 
the layers can be easily separated and individually assessed 
[18]. The following section offers an overview of the most 
popular commercial models, a histological comparison of 
the numbers, and the types of cells included in these models.

Construction of 3D skin models

Dozens of air–liquid interface human skin models exist, 
generally falling into the following four categories: recon-
structed human epidermis (RHE), full-thickness models, 
RHE cultured on dermis, and skin explant models (Fig. 3, 
Table 1).

RHE models

The RHE model consists of a stratified keratinocyte epider-
mis, which can function as either a standalone epidermis 
or alongside a dermis layer [19]. Many commercial mod-
els are standalone stratified epidermis models composed of 
keratinocytes, and many comparable non-commercial epi-
dermal models have been reported [19, 20].

Full thickness models

When an RHE model is cultured atop a dermal model, the 
skin mimetic becomes a full-thickness model containing 
both a dermis and epidermis [19–26]. A commonly used 
dermal support is composed of fibroblasts embedded in col-
lagen to form a “living dermal equivalent.” This model has 
the advantage over RHE alone in that the interaction of the 

Fig. 2   Simplified 3D model of skin, along with most cell types com-
monly found in each layer. Immune cells are marked with blue text. 
The layer of skin immediately exposed to the environment is the 

stratum corneum with the epidermis underneath. The dermis has the 
greatest number of different cell types responsible for protecting the 
body. The hypodermis is largely composed of adipose (fat) tissue
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keratinocytes with fibroblasts allows for more complexity 
in cellular response and higher integrity of barrier function. 
When keratinocytes are added atop this dermal equivalent, 
they proliferate and differentiate to create a stratified epi-
dermis. The resultant living skin equivalent is considered 
a full-thickness skin model, as it includes both dermal and 
epidermal mimetics [20, 22, 24, 25, 27].

RHE cultured on dermis

As an alternative to a fibroblast dermal equivalent, de-epi-
dermized human dermis has been used as a culture substrate 
for stratified keratinocyte-based epithelial mimetics [22, 25]. 
In these models, the epidermis is removed from human skin 
and replaced with a lab-cultured RHE, resulting in a model 
that contains both dermis and epidermis [22, 25].

Although some reconstructed skin models have been 
validated by regulatory bodies as replacements for standard 
animal-based irritation and corrosion tests, the Organiza-
tion for Economic Cooperation and Development (OECD) 
acknowledges that skin mimetics may not be an appropriate 
method for all chemicals and recommends their use as an 
initial method to be followed by in vivo studies [28]. While 
these models can be used to evaluate toxin response, they 
lack the barrier function and complexity required to accu-
rately predict the effects of those toxins. Additionally, there 

is no reproducible and agreed-upon method to incorporate 
immune cells into skin mimetics [21]. Thus, their limitations 
need to be taken into consideration when applying these 
models to study radiation biomarkers with multi-omics 
methods.

Skin explant models

Histocultures, a type of skin explant model, are derived 
from surgical excess and contain all the cell types present 
within in vivo skin, and thus provide a highly accurate 
model of the in vivo response to toxins. The inclusion 
of immune cells, fatty layers, and microvasculature natu-
rally present in human skin creates a complexity that can 
both contribute to the model’s in vivo relevance and pre-
sent an added challenge since it cannot be experimentally 
controlled [21]. Additionally, skin can vary significantly 
between donors based on age and genetics, and the amount 
of tissue available from each donor is limited. Explants 
are typically cultured at the ALI to maintain skin polarity 
and can retain keratinocyte viability for 75 days or more 
[29]. However, changes in metabolic activity, a decrease 
in barrier function, spongiosis, necrosis, parakeratosis 
and epidermal/dermal separation begin to occur after 
9 days [30]. It is generally assumed that the degradation 
occurs due to removal from the host environment, immune 
cell activation, and lack of specific, renewable nutrient, 

Fig. 3   General categories of skin models cultured at the air–liquid 
interface. The models discussed in this paper all fall into these gen-
eral categories with some novel variations. a Reconstructed human 
epidermis (RHE), composed of stratified keratinocytes on an inert 
porous membrane cultured at the air–liquid interface. b A full-thick-
ness model, where a RHE is cultured atop a dermal equivalent com-

posed of fibroblasts embedded in a collagen matrix. c Re-epidermized 
dermis, where the epidermis is removed from human skin leaving a 
de-epidermized dermis. Then, a RHE is cultured on the de-epider-
mized dermis to produce a model with both epidermal and dermal 
components. d A skin explant model where human skin is cultured at 
the air–liquid interface directly from the donor
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mechanical, or environmental cues. However, no study has 
yet to date defined what the specific missing cues are to 
prolong the lifespan of these cultures. Nonetheless, there 
are no skin mimetics that can fully recapitulate the barrier 
and metabolic functions of explanted human skin. Skin 
explant models should be considered as potentially suit-
able for -omics studies, along with consideration of their 
limitations and rapid degradation potential of the cultures.

Commercial models

MatTek

The MatTek corporation (Ashland, MA, USA) offers two 
models: a RHE full-thickness skin model (EpiDermFT™) 
and an epidermal model (EpiDerm™) [31]. The lifespan of 
the full-thickness model is 14 days post delivery, whereas 
the epidermal model is expected to have up to 21 days of 
lifespan. The epidermal model has been utilized for geno-
toxicity studies including the micronucleus assay [32, 33]. 
Micronuclei are small extranuclear bodies resulting from 
chromosome damage or even whole chromosomes lagging 
behind during anaphase. This is also a standard assay per-
formed in radiation exposure studies and the absorbed dose 
can be quantified by fitting to known curves for low and 
high LET types of radiation [34]. Whereas this assay is per-
formed on lymphocytes for radiation studies, similar effects 
and curves might also be feasible for skin. The epidermal 
model has been approved and validated by the European 
Center for the Validation of Alternative Methods (ECVAM) 
and approved by the Organization for Economic Cooperation 
and Development (OECD) to test for corrosion, irritation, 
and photo-toxicity [19, 31, 35]. The full-thickness model 
has been utilized in non-ionizing radiation studies inducing 
phosphorylation of Histone 2AX (H2AX) [36].

Phenion® Full Thickness (FT), FT LONG‑LIFE, 
and epiCS reconstructed skin models

With advancements in biocompatible materials and cell 
culture techniques, in 2007, a novel skin model was devel-
oped by Henkel AG & Co. (Düsseldorf, DE) that was later 
branded under the name Phenion®. The Phenion® FT Skin 
Model, named for containing both a dermis and epidermis, 
employs the use of keratinocytes and fibroblasts that are iso-
lated from the same human donor. These are then seeded 
into a rigid collagen matrix to help provide a suitable sub-
strate for the cells to attach and interact with one another in a 
3D environment [37]. The Phenion® FT Skin Model features 
a fully stratified epidermis, a multi-layered stratum corneum 
as well as a dermis layer. Once the cells have matured to a 
satisfactory proprietary standard, the multi-cell co-culture is 

airlifted to provide further physical and environmental cues 
for further differentiation of the tissue. The use of a rigid, 
proprietary collagen sponge into which the cells take resi-
dence provides the culture with a degree of tensile strength 
that is needed for chemical and mechanical interrogation 
studies. The Phenion® FT Skin Model is available in vari-
ous sizes (e.g., 1.4 cm or 3.1 cm) and formats (e.g., standard 
or tissue insert) depending on the application and customer 
needs [38]. The lifespan of these models range from 7 days 
for the short-term FTM to 50 days in culture for the “LONG-
LIFE” variant. One of the drawbacks to the Phenion FTM is 
that because it only utilizes keratinocytes and fibroblasts, it 
does not have an active immune component. Another poten-
tial drawback is the relative maturity of the dermo-epithelial 
barrier.

The FT LONG-LIFE model is better suited for chronic 
skin exposure studies as well as recovery or tissue regen-
eration studies. Tissues can be cultured in a “raft” format 
with media underneath or in a suspended permeable sup-
port device for more individualized testing conditions. The 
medium used to culture these tissues is proprietary and is 
amenable to customer requests (i.e., no phenol red, low 
serum, etc.). Because this model uses human-derived cells 
isolated from a single donor for a given batch and allows 
the cells to differentiate into their respective skin cells, its 
application for -omics research to capture a native human 
skin response is very promising.

The Phenion® epiCS model is composed of stratified 
keratinocytes on a porous polycarbonate substrate in an 
air–liquid interface (ALI) and is specifically tailored for 
assaying skin corrosives, irritants, and sensitizers [39]. The 
composition of this model resembles the human epidermis 
with developed layers, including the stratum basale, stratum 
spinosum, stratum granulosum and stratum corneum, and 
like human skin, the model also provides barrier function 
for permeability studies. The epiCS model has been used in 
assays that monitor IL-18 release as a measure of skin sen-
sitization in response to compound exposure with promising 
performance [40–42]. Although epiCS has not been used 
for many peer-reviewed studies, the manufacturer claims it 
has applications in testing skin corrosion, irritation, sensiti-
zation, photo-toxicity, and genotoxicity studies. The epiCS 
model is approved by ECVAM for testing skin irritation and 
corrosion.

Episkin

L’Oreal S.A. (Clichy, Hauts-de-Seine, FR) acquired EpiSkin 
S.A. (Lyon, FR) in 1997 to overcome challenges with animal 
testing and it has grown into one of the most popular RHE 
models. EpiSkin is an RHE comprised human keratinocytes 
cultured on a collagen matrix at the ALI. According to the 
manufacturer, the addition of collagen prevents shrinking 
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of cell layers, thereby keeping the layers tighter together. 
The RHE contains the same layers as the native human epi-
dermis, but with a thickened stratum corneum, and major 
differences in cell morphology compared to human skin [20, 
43]. Like most other RHE models, EpiSkin is significantly 
more permeable to compounds than human skin and retains 
a greater proportion of compounds that have a high protein 
binding capacity as a result of the collagen layer. Signifi-
cant variability has been noted between batches [43, 44]. 
EpiSkin has proven effective in photo-toxicity and genotox-
icity studies and is one of the models approved for use by the 
ECVAM to test skin irritation and corrosion; however, like 
most RHE-based cultures, studies are generally performed 
within three days of receiving the samples and follow-on 
studies with increased relevance to human physiology are 
recommended [19, 45–49].

SkinEthic™

SkinEthic™ RHE, acquired by Episkin in 2006 (under the 
L’Oreal product offerings), is composed of human keratino-
cytes on an inert polycarbonate filter cultured at an ALI [43]. 
The model is cultured for 17 days prior to use, and contains 
some of the major layers of the native human epidermis, 
namely the stratum corneum, stratum granulosum, and 
stratum spinosum. For this model, the stratum corneum is 
significantly thicker than native human skin [20, 43, 50]. 
Although the lipid composition of the model is generally 
similar to that of native human skin, differences in the dis-
tribution of lipids throughout the tissue have been observed 
[20, 43]. SkinEthic™ RHE has shown utility in photo-tox-
icity, irritation, and corrosion studies. However, like most 
reconstructed human epidermis models, its barrier function 
and performance in permeability and absorption studies are 
significantly different from the performance of human full-
thickness skin or human epidermis, with studies reporting 
a sevenfold increase in permeability as compared to native 
human skin [20, 43, 51–53]. This increased permeability is 
typical for RHE models [54]. Reproducibility of results is 
a persistent issue with SkinEthic RHE; the model can cor-
rectly rank compounds in order of irritation potential, but 
with varying reports of reproducibility [44, 55]. Similarly, 
the model’s enzymatic activity is comparable to normal 
human epidermis but is highly variable [43, 56].

LabCyte EPI‑model

LabCyte (San Jose, CA, USA), a subsidiary of Beckman 
Coulter Inc., offers the LabCyte EPI-MODEL (produced by 
Japan Tissue Engineering Co., Ltd., Aichi, Japan), which 
is a RHE composed of human keratinocytes on a porous, 
inert polyethylene terephthalate (PET) membrane [54, 57]. 
The structure of the model is similar to the native human 

epidermis and includes the basal layer, stratum spinosum, 
granular layer, and the stratum corneum. Esterases, which 
play a major role in skin metabolism, are similar in localiza-
tion and activity as seen in the native human epidermis [58]. 
However, there are large variations in the RHE data and 
between human skin donors, making comparison difficult 
[58]. The EPI-MODEL demonstrates around tenfold higher 
permeability to compounds than native human epidermis. 
It has shown success in a genotoxicity study, although it is 
more commonly used for skin irritation and corrosion stud-
ies [57, 59]. Its use is encompassed under OECD testing 
guidelines as an alternative to animal testing for skin corro-
sion and irritation, and has been approved by the Japanese 
Center for the Validation of Alternative Methods (JaCVAM) 
to test for corrosion and irritation [35, 57].

Multiomics in skin radiation research

From the success of the human genome project, the land-
scape of MS-based -omics techniques has undergone a 
gradual shift within the last twenty years. The emergence of 
enabling technologies has shifted how biomarker discovery 
and disease/injury characterization is performed [60, 61]. 
Gel-based techniques such as two-dimensional difference 
gel electrophoresis (2D-DIGE) have slowly given way to 
faster, more comprehensive, and less labor-intensive work-
flows utilizing ultra-high-performance liquid chromatogra-
phy coupled to mass spectrometry (UHPLC-MS/MS) [62, 
63]. As this shift has occurred and MS-based technology 
and bioinformatic pipelines have drastically improved, there 
has been a subsequent drastic improvement in our holistic 
understanding of biological processes affected by IR, spe-
cifically LDR. Quantifying IR exposure has long been reli-
ant on cytogenetic techniques such as the labor-intensive 
dicentric chromosome assay (DCA), which has been the 
gold standard of radiation exposure detection for decades 
[64]. However, the rise of MS-based -omics techniques has 
reignited a desire to seek out new biomarkers for radiation 
exposure that can provide enhanced exposure information 
(e.g., dose rate/type, time since exposure) [65]. Utilizing 
these techniques has, thus far, provided unparalleled ability 
to investigate many different tissue and cell types susceptible 
to IR exposure, and shows great promise for expanding upon 
our ability to investigate exposure in real-world scenarios 
and for improving personalized medicine [66, 67].

The skin is one of the most complex sample types to 
investigate for IR exposure from an -omics perspective, 
owing to its diversity of cell types and the biochemical 
functions it serves (Fig. 2). The many critical functions of 
the skin, such as thermoregulation, sensation, and excretion, 
create a delicate interplay between many different metabolic 
processes [68]. Skin has been shown to exhibit responses to 
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ionizing radiation both on short (hours) and long (> 7 days) 
time scales, and these changes can be dose-dependent [69]. 
Many studies utilize standard 2D cell cultures for -omics 
investigations of radiation exposure, including proteomics, 
metabolomics, and others [70–76]. However, there are sig-
nificant drawbacks associated with utilizing 2D rather than 
3D or in vivo skin models [77, 78]. Studies of IR penetra-
tion are not possible with a 2D model, and cell signaling, 
cell differentiation, and protein expression have all been 
shown to be less accurate in 2D models (particularly with 
the absence of immune cells). Additionally, 3D skin models 
can be engineered with genetic alterations and avoid key 
morphological differences with commonly used laboratory 
animal (e.g., murine) vs. human skin models [68]. Currently, 
some IR studies of in vitro 3D skin models have been per-
formed for genomics [79], transcriptomics [80], proteomics 
[81–83], and metabolomics [84] with commercially avail-
able skin models. However, the limited body of literature of 
in vitro 3D human skin models used for MS-based -omics 
in radiation exposure indicates this field is still relatively 
unexplored.

One of the unique challenges associated with 3D skin 
model sampling/preparation is that homogenization of tissue 
often includes several strata of skin, which can in turn com-
plicate analysis; high-abundance structural proteins, such as 
fibroblasts and keratinocytes, often overwhelm important but 
lower-abundance proteins found in each layer. Consideration 
must be made to the stratum/strata of skin that is to be inves-
tigated, as well as the cell types present within; this factors 
into the sampling technique (punch biopsy, suction blister, 
tape stripping, etc.) to be employed [85]. However, sample 
preparation for 3D skin models is in principle the same as 
for skin biopsies; for most MS-based -omics applications, 
tissue/cell samples are homogenized and lysed, followed 
by in-house procedures for each application. One unique 
sample preparation method from Dyring-Andersen et al. 
utilized curettage and individual punch biopsies, along with 
cell cultures, to carefully map the entire proteome of each 
individual section (outer epidermis, inner epidermis, der-
mis, and sub-cutis) of complete human skin biopsies [86]. 
By creating their own data-dependent acquisition (DDA)-
based approach to create an in-house proteome library, they 
were able to identify an astonishing 10,701 proteins across 
these four sub-layers of skin; a majority of these proteins 
(56.3%) were expressed in all four sub-layers but in sub-
stantially different (six orders of magnitude) abundances. 
These findings only further showcase the unique proteomic 
profiles within each subsection of skin tissue. To the best of 
our knowledge, there is only one instance in the literature 
of MS-based multi-omics workflows described for 3D skin 
models exposed to LDR [81]; more in-depth investigation 
is sorely lacking.

As MS-based -omics workflows have become exponen-
tially more complicated (Fig. 4), manual data interpretation 
has become impossible and bioinformatics workflows are 
now indispensable [87]. These workflows, including com-
parisons of the online databases and search tools used to 
interpret data, have been reviewed previously for MS-based 
-omics [88–90]. The inherent complexity of MS-based 
proteomics analysis does, however, require special con-
siderations for how data are generated. Analysis of peptide 
sequences via MS generally falls into two broad categories: 
data-dependent acquisition (DDA) or data-independent 
acquisition (DIA). DDA selects a subset of precursor MS1 
peaks, typically the most abundant, to be fragmented into 
MS2, whereas DIA acquires a MS1 spectrum followed by 
MS2 spectra for a certain limited mass range, which is then 
repeated across the entire mass range. Although DDA has 
historically been used very successfully to generate pro-
teome coverage, its stochastic nature can inherently limit its 
sensitivity for low-abundance peptides and leads to under-
sampling in many cases [91, 92]. Alternatively, one of the 
main limitations for DIA currently is the complexity and 
computational burden of the data that are produced. It has 
recently been shown that both DDA and DIA have better 
protein quantification reproducibility using local library 
searching vs. online database queries; for larger datasets, 
this library building can therefore enhance the quality of the 
data that are produced [93].

Biomarkers of low dose radiation exposure

There are many biomarkers for LDR exposure that have 
been discovered based upon years of multi-omics experi-
ments that can be broadly characterized by DNA/RNA 
repair mechanisms, lipid oxidation, and metabolic changes 
[94–96]. However, many of the most promising biomark-
ers for LDR exposure, such as serum amylase and diamine 
oxidase, arise from system-level dysregulation and are not 
skin-specific [97]. Some, such as γ-H2AX (Ser-139 phos-
phorylation of H2AX), which is responsible for early DNA 
repair and largely studied as a marker for γ/X-ray-radiation-
induced damage, have received considerable attention over 
the years [98, 99]. γ-H2AX is of note because this change 
is induced at radiation doses as low as 1 mGy and has been 
studied in cultured skin biopsy models [100–102].

Exposure to ionizing radiation can promote a general 
stress response in cells, tissues, and whole organs through 
a multitude of different pathways. This poses a significant 
hurdle for LDR biomarker research for several reasons: 
these stress responses are often not unique to IR exposure, 
they can be highly dose- or individual-dependent, they are 
often not indicative of the type of radiation encountered, 
and in some cases can be quite transient [103, 104]. There 
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is even a growing body of evidence that challenges the more 
traditional linear no-threshold (LNT) model at low doses; 
hormetic effects have been observed in many instances of 
low-dose exposure [105].

As previously stated, there is a relative dearth of pub-
lished information on in vitro 3D skin models interrogated 
by MS-based -omics; this holds true for clinical low-dose 
radiation studies, as well. However, there is still much rel-
evant information to be gathered from other in vivo and 
ex vivo skin-related studies that can provide useful com-
parisons for evaluating the suitability of a given in vitro skin 
model. Radiotherapy (RT)-induced damage to the skin can 
activate physiological responses in a similar method to other 
sources of low-dose ionizing radiation [106]. This response 
is usually dose- or individual-dependent, and can result from 

either direct exposure or via non-targeted (bystander) effects 
[107]. In particular, bystander effects are of interest clini-
cally due to the need to localize ionizing radiation effects 
to tumors or malignant cells only. These experiments have 
thus far been performed in murine models, human cell cul-
tures, and some 3D skin models. Guipaud et al. followed 
a time-course analysis for gamma-irradiated (0–80 Gy) 
mice utilizing skin biopsies, as well as proteomic serum 
analysis [108]. Histological and 2D-DIGE-MS results were 
compared and several acute-phase proteins (APP), as well 
as proteins from the coagulation system were found to be 
significantly changed in the irradiated mice. Lacombe et al. 
exposed T lymphocytes cultured from patient blood with/
without sub-cutaneous radiation-induced breast fibrosis to 
sham and 8 Gy radiation doses ex vivo [109]. Forty-eight 

Fig. 4   Sample workflow 
for MS-based -omics analy-
sis. Beginning with sample 
radiation exposure, this 
workflow includes both targeted 
(analyte(s) are known) and 
untargeted (analyte(s) are 
unknown) mass spectrometry 
and highlights the components 
involved in each step. The 
ontological tools listed here are 
not exhaustive but represent the 
bulk of available options
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hours after irradiation, samples were subjected to isobaric 
tags for relative and absolute quantitation via iTRAQ (an 
isobaric labeling technique that enables protein quantitation) 
labeling and processed for proteomic analysis [110]. Four of 
the 23 proteins that matched pre-set criteria were involved 
in adenylate kinase 2 (AK2) overexpression and oxidative 
stress regulation. An increase was also seen after 48 h in 
both ROS as well as NADPH oxidases (NOXs).

MS-based -omics approaches have been used to study 
IR effects in many different tissues and cell types to bet-
ter understand possible biomarkers for exposure. Chaze 
et al. investigated the serum proteome by 2D-DIGE and 
surface-enhanced laser desorption/ionization time-of-flight 
mass spectrometry (SELDI-TOF–MS) after relatively high 
(20–80 Gy) doses of IR to murine skin models, and found 
a panel of 14 biomarkers, mostly apolipoproteins and pro-
teins of the complement system (Complement factor I, 
Complement factor H, etc.), that allowed them to discrimi-
nate between non-irradiated and irradiated animals [111]. 
A follow-on enzyme-linked immunosorbent assay (ELISA) 
study indicated that eight of these proteins were able to 
discriminate between doses of < 2 Gy and > 10 Gy [112]. 
Skiöld et al. used isotope-coded protein labeling (ICPL) 
analysis on blood samples gathered in vitro and irradiated 
from 1 to 150 mGy and found differences in protein expres-
sion between radiation-sensitive and normo-sensitive breast 
cancer patients at both levels [112]. Levels of PRDX2 and 
BLVRB, both associated with oxidative stress, were found 
up-regulated in the radiation-sensitive patients but remained 
unchanged in the normo-sensitive patients. However, protein 
expression levels are not the only changes that can indicate 
possible biomarkers for IR exposure. Post-translational 
modifications (PTM) can bring added complexity but also 
granularity to possible IR exposure biomarkers. Beli et al. 
were able to show that protein phosphorylation associated 
with DNA damage response (DDR), a pathway commonly 
associated with IR exposure, either increased (PPM1G) or 
decreased (THRAP3) their presence at the site of DNA dam-
age [113]. Schettino et al. utilized a micronuclei assay to 
determine DNA damage in the EPI-200 (MatTek) in vitro 
human skin model to investigate bystander effects for low-
dose ionizing radiation [114]. A 3.5 MeV proton source 
(0.1–1.0 Gy) was used to irradiate the tissue, which was sub-
sequently sectioned by microtome and cells from these slices 
(~ 200 µm thick) were isolated. Micronuclei frequency were 
found to be most elevated closest to the radiation source, 
with decreasing frequency farther away. The relatively 
small amount of micro-nucleation at large (several mm) 
distances from the source indicate that bystander effects did 
not coincide with significant cellular damage. Although this 
approach did not utilize MS-based analysis, it is one of the 
few studies done on an in vitro 3D skin model and points 
toward the importance of considering bystander effects with 

these models. At least one report of metabolomics changes 
in multiple cell types support the idea that LDR exposure 
can be difficult to track at this level [115]. However, the 
relative ease of sampling associated with metabolomics, as 
well as its ability to track transient (~ hours) changes in the 
cellular metabolome after IR exposure warrant further inves-
tigation by this technique.

Although there has been significant interest in the effects 
of IR on various tissues and cell cultures in regard to radio-
therapy and clinical applications, there once again remains 
a lack of MS-based -omics investigations. Nearly all of 
the associated research has been focused on genomics and 
transcriptomics of ionizing radiation, and often at radiation 
doses (10 s of Gy) that far exceed what could be consid-
ered low dose [116, 117]. There are also many logistical and 
reporting hurdles to overcome. It can be difficult to directly 
compare studies, even with the same matrix (e.g., skin, 
blood, serum), without detailed descriptions of the IR source 
and dosing conditions, which is not always made available. 
Sample collection and preparation is a crucial first step after 
IR exposure, but these procedures are also often not descrip-
tive enough to allow for methodologies to be transferable 
from one laboratory to another. Nevertheless, the significant 
advantages in terms of data granularity and complexity for 
modern MS-based -omics applications suggests that further 
investigations are warranted [118].

Conclusion

As more information is gathered about the effects of LDR 
exposure, it is becoming clear that MS-based -omics will 
play a critical role in future [119]. The speed, sensitivity, 
and granularity of which these techniques are capable will 
provide a far more holistic picture of the complex responses 
of cells, tissues, and organs to LDR. This information will 
be essential in applying LDR research to personalized 
medicine, where phenotype and radiation sensitivity must 
be considered. Concurrently, the continued development of 
in vitro 3D skin models promises to provide excellent spati-
otemporal results as these models are improved. These spa-
tiotemporal results can also be further improved upon with 
the addition of imaging mass spectrometry (IMS) techniques 
[120, 121]. The ability to image biomarkers within different 
strata of skin could serve as a potential solution to issues 
with whole tissue homogenization, and should be seen as 
a natural progression beyond immuno-histochemical stain-
ing for visualization of biomarkers in tissue. As more MS-
based studies are conducted, the advantages of IMS should 
be included wherever possible, for both larger (proteins) 
and smaller (metabolites) biomarkers. The ability to move 
beyond animal-based models has significant advantages in 
terms of throughput and cost, but there are still limitations 
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to how well these 3D models are able to mimic their in vivo 
counterparts. Indeed, the complexity of both the analysis 
technique as well as the in vitro model will necessitate 
advances in bioinformatics, as well. By leveraging all these 
technologies and capabilities in unison, it will become pos-
sible to probe the most difficult of questions related to LDR, 
namely the ability to determine dose type/rate and level of 
exposure in both the short and long term.
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