

Experts in air quality, odour and emission monitoring.

Annual Emission Testing

Report: R018996[DRAFT 2]

Henkel Australia Pty Ltd, Seven Hills

Accredited for compliance with ISO/IEC 17025 - Testing. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration, and inspection reports.

Document Information

Client Name: Henkel Australia Pty Ltd

Report Number: R018996[DRAFT 2]

Date of Issue: 9 October 2025

Attention: Nader Khalaf

Address: 7 Stanton Rd

Seven Hills NSW 2147

Testing Laboratory: Ektimo Pty Ltd, ABN 86 600 381 413

Report Authorisation

Rick Peralta
Air Monitoring Consultant

NATA Accredited Laboratory
No. 14601

Aaron Davis Ektimo Signatory

This document is confidential and is prepared for the exclusive use of Henkel Australia Pty Ltd and those granted permission by Henkel Australia Pty Ltd. The report shall not be reproduced except in full.

Please note that only numerical results pertaining to measurements conducted directly by Ektimo are covered by Ektimo terms of NATA accreditation as described in the Test Methods table. This does not include calculations that use data supplied by third-parties, comments, conclusions, or recommendations based upon the results. Refer to Test Methods section for full details of testing covered by NATA accreditation.

Table of Contents

1	t	Executive Summary	3
1	1.1	Background	3
1	1.2	Project Objective & Overview	3
1	1.3	Results Summary	4
2	F	Results	5
2	2.1	Hot Melt Scrubber	5
2	2.2	Hot Melt Belt Cooler Exhaust	7
2	2.3	Glue Bench - PVE Scrubber	9
2	2.4	PVE - Charcoal Filter	11
2	2.5	Radco Oil Heater	13
3	Ç	Sample Plane Compliance	14
3	3.1	Hot Melt Scrubber	14
3	3.2	Hot Melt Belt Cooler Exhaust	14
3	3.3	Glue Bench - PVE Scrubber	15
3	3.4	PVE - Charcoal Filter	15
3	3.5	Radco Oil Heater	15
4	F	Plant Operating Conditions	16
5	7	Test Methods	16
6	[Deviations to Test Methods	17
7	(Quality Assurance/Quality Control Information	18
8	[Definitions	19
9	Å	Appendices	20
A	Дрр	pendix A: Site Image	20
A	App	oendix B: Chain of Custody	21
A	App	oendix C: Laboratory Results	22

1 Executive Summary

1.1 Background

Ektimo was engaged by Henkel Australia Pty Ltd to perform emission testing at their Seven Hills plant. Testing was carried out in accordance with Environment Protection Licence 258.

1.2 Project Objective & Overview

The objective of the project is to quantify emissions from five (5) discharge points to enable the load of assessable pollutants to be calculated pursuant to Henkel Australia Pty Ltd's Environmental Licence.

Monitoring was performed as follows:

Location	Test Date	Test Parameters*
Hot Melt Belt Cooler Exhaust	02 September 2025	
Hot Melt Scrubber	02 September 2025	Volatile Organic Compounds (VOCs) Particulate matter <10µm (PM ₁₀) Oxygen (O ₂) and carbon dioxide (CO ₂)
Glue Bench - PVE Scrubber	03 September 2025	Oxygen (O2) and carbon dioxide (CO2)
Radco Oil Heater	03 September 2025	Particulate matter $<10\mu m$ (PM ₁₀) Nitrogen oxides (as NO ₂), carbon monoxide (CO), oxygen (O ₂) and carbon dioxide (CO ₂)
PVE - Charcoal Filter	03 September 2025	Total Particulate Matter (TPM) ¹ Particulate matter <10µm (PM ₁₀) Oxygen (O ₂) and carbon dioxide (CO ₂) Volatile Organic Compounds (VOCs)

^{*} Flow rate, velocity, temperature, and moisture were also determined.

¹Due to the insufficient port size (1-inch) at the PVE - Charcoal Filter exhaust stack, PM10 measurements could not be performed. By definition, PM10 (particulate matter <10 microns in aerodynamic size) forms a fraction of total particulate matter (TPM). The approved sampling method used to determine TPM in NSW is EPA TM-15, which can achieve lower concentration detection limits than the method used to determine PM10, namely NSW EPA OM-5. On this occasion, due to PVE-Charcoal Filter exhaust stack porthole configuration, Ektimo utilised NSW EPA TM-15 to measure the TPM concentration and thus estimate PM10.

All volume-based concentrations are reported on a dry basis at STP.

1.3 Results Summary

The following table summarises the results of the testing programme.

Location	Pollutant	Detected Values mg/m ³	Mass Rate g/min
Hot Melt Scrubber	Volatile organic compounds (VOCs)	19	3.3
Hot Weit Scrubbei	Particulate matter <10 μ m (PM ₁₀)*	<3	<0.5
Hot Melt Belt Cooler Exhaust	Volatile organic compounds (VOCs)	2	0.63
Hot Weit Beit Cooler Exhaust	Particulate matter <10 µm (PM ₁₀)*	<3	<0.9
Glue Bench - PVE Scrubber	Volatile organic compounds (VOCs)	6.6	0.54
Glue Berich - FVE Scrubber	Particulate matter <10 µm (PM ₁₀)*	<3	<0.2
PVF - Charcoal Filter	Volatile organic compounds (VOCs)	150	0.21
FVE - Charcoal Filler	Total Particulate Matter (TPM)*	<3	<0.004
Radco Oil Heater	Particulate matter <10 μm (PM ₁₀)*	<3	<0.04
Rauco Oli fleater	Nitrogen Dioxide (NO _x as NO ₂)	58	0.8

Please note that the measurement uncertainty associated with the test results was not considered when determining whether the results were compliant or non-compliant.

^{*} Note: Probe wash sample compromised.

2 Results

Hot Melt Scrubber

Date 2/09/2025 Henkel Australia Pty Ltd Client Report R018996 Stack ID Hot Melt Scrubber Licence No. Location Seven Hills, NSW 2147 **Ektimo Staff** Rick Peralta, Muhammad Usman State NSW

Process Conditions Normal Operation: Please refer to client records.

Stack Parameters			
Moisture content, %v/v	1		
Gas molecular weight, g/g mole	28.9 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.21		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1239 & 1346		
Temperature, °C	20		
Temperature, K	293		
Ambient pressure, kPa	102		
Stack pressure, kPa	102		
Velocity at sampling plane, m/s	7.8		
Volumetric flow rate, actual, m³/s	3		
Volumetric flow rate (wet STP), m³/s	2.8		
Volumetric flow rate (dry STP), m³/s	2.8		
Mass flow rate (wet basis), kg/h	13000		

Gas Analyser Results	Average
Sampling time	1245 - 1345
	Concentration % v/v
Carbon dioxide	<0.4
Oxygen	20.9

Isokinetic Results	Results	
Sampling time	1245-1345 (PM10)	
	Concentration Mass Rate mg/m³ g/min	
Fine particulates (PM10)*	<3 <0.5	
D50 cut size, 10µm	10.0	
Isokinetic Sampling Parameters		
Sampling time, min	60	
Isokinetic rate, %	105	
Gravimetric analysis date (PM ₁₀)	09-09-2025	

^{*} Note: Probe wash sample compromised.

Date 2/09/2025 Client Henkel Australia Pty Ltd Report R018996 Stack ID Hot Melt Scrubber Licence No. 258 Location Seven Hills, NSW 2147 **Ektimo Staff** Rick Peralta, Muhammad Usman State NSW

Process Conditions Normal Operation: Please refer to client records.

Total VOCs (as n-Propane)	Results
Sampling time	1245-1345
	Concentration Mass Rate
	mg/m³ g/min
Total	19 3.3

VOC (speciated)	Results	
Sampling time	1245-1345	
()	Concentration Mass Rate mg/m³ g/min	
Detection limit ¹	<0.03 <0.006	
Acetone	0.12 0.02	
Benzene	<0.03 <0.006	
Toluene	0.26 0.043	
Decane	0.058 0.0099	
Dodecane	0.038 0.0064	
Residuals as Toluene	19 3.2	

(1) Unless otherwise reported, the following target compounds were found to be below detection:

Ethanol, Isopropanol, Pentane, 1,1-Dichloroethene, Acrylonitrile, Dichloromethane, trans-1,2-Dichloroethene, Methyl ethyl ketone, n-Hexane, cis-1,2-Dichloroethene, Ethyl acetate, Chloroform, 1,1,1-Trichloroethane, 1,2-Dichloroethane, Cyclohexane, Benzene, Carbon tetrachloride, Butanol, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 1-Methoxy-2-propanol, 3-Methylhexane, Heptane, Trichloroethylene, Ethyl acrylate, Methyl methacrylate, Propyl acetate, Methylcyclohexane, Methyl Isobutyl Ketone, 1,1,2-Trichloroethane, 2-Hexanone, Octane, Tetrachloroethene, Butyl acetate, Chlorobenzene, Ethylbenzene, m + p-Xylene, 1-Methoxy-2-propyl acetate, Styrene, o-Xylene, Butyl acrylate, Nonane, 2-Butoxyethanol, Cellosolve acetate, 1,1,2,2-Tetrachloroethane, Isopropylbenzene, alpha-Pinene, Propylbenzene, 1,3,5-Trimethylbenzene, beta-Pinene, tert-Butylbenzene, 1,2,4-Trimethylbenzene, 3-Carene, 1,2,3-Trimethylbenzene, D-Limonene, Undecane, Tridecane

2.2 Hot Melt Belt Cooler Exhaust

Date 2/09/2025 Client Henkel Australia Pty Ltd R018996 Hot Melt Belt Cooler Exhaust Report Stack ID Licence No. Seven Hills, NSW 2147 Location **Ektimo Staff** Rick Peralta, Muhammad Usman NSW State **Process Conditions** Load: 300 Bags/Batch/5 hrs; Product (S130A)

Stack Parameters			
Moisture content, %v/v	0.91		
Gas molecular weight, g/g mole	28.9 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.22		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1034 & 1157		
Temperature, °C	19		
Temperature, K	292		
Ambient pressure, kPa	102		
Stack pressure, kPa	102		
Velocity at sampling plane, m/s	12		
Volumetric flow rate, actual, m³/s	5.7		
Volumetric flow rate (wet STP), m³/s	5.4		
Volumetric flow rate (dry STP), m³/s	5.4		
Mass flow rate (wet basis), kg/h	25000		

Gas Analyser Results	Average
Sampling time	1055 - 1155
	Concentration % v/v
Carbon dioxide	<0.4
Oxygen	20.9

Isokinetic Results	Results	
Sampling time	1055-1155 (PM10)	
	Concentration Mass Rate mg/m³ g/min	
Fine particulates (PM10)*	<3 <0.9	
D50 cut size, 10µm	10.1	
Isokinetic Sampling Parameters		
Sampling time, min	60	
Isokinetic rate, %	88	
Gravimetric analysis date (PM ₁₀)	09-09-2025	

^{*} Note: Probe wash sample compromised.

Date2/09/2025ClientHenkel Australia Pty LtdReportR018996Stack IDHot Melt Belt Cooler ExhaustLicence No.258LocationSeven Hills, NSW 2147

Ektimo Staff Rick Peralta, Muhammad Usman State

Process Conditions Load: 300 Bags/Batch/5 hrs; Product (S130A)

Location Seven Hills, NSW 2147
State NSW

Total VOCs (as n-Propane)	Results
Sampling time	1055-1155
	Concentration Mass Rate
	mg/m³ g/min
Total	2 0.63

VOC (speciated)		Results		
	Sampling time	1055-	155	
()		Concentration mg/m³	Mass Rate g/min	
Detection limit ¹		< 0.04	< 0.01	
Acetone		0.059	0.019	
Benzene		<0.04	<0.01	
Toluene		1.7	0.55	
Residuals as Toluene		0.21	0.069	

$(1) \, Unless \, otherwise \, reported, the \, following \, target \, compounds \, were \, found \, to \, be \, below \, detection: \, \\$

Ethanol, Isopropanol, Pentane, 1,1-Dichloroethene, Acrylonitrile, Dichloromethane, trans-1,2-Dichloroethene, Methyl ethyl ketone, n-Hexane, cis-1,2-Dichloroethene, Ethyl acetate, Chloroform, 1,1,1-Trichloroethane, 1,2-Dichloroethane, Cyclohexane, Benzene, Carbon tetrachloride, Butanol, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 1-Methoxy-2-propanol, 3-Methylhexane, Heptane, Trichloroethylene, Ethyl acrylate, Methyl methacrylate, Propyl acetate, Methylcyclohexane, Methyl Isobutyl Ketone, 1,1,2-Trichloroethane, 2-Hexanone, Octane, Tetrachloroethene, Butyl acetate, Chlorobenzene, Ethylbenzene, m + p-Xylene, 1-Methoxy-2-propyl acetate, Styrene, o-Xylene, Butyl acrylate, Nonane, 2-Butoxyethanol, Cellosolve acetate, 1,1,2,2-Tetrachloroethane, Isopropylbenzene, alpha-Pinene, Propylbenzene, 1,3,5-Trimethylbenzene, beta-Pinene, tert-Butylbenzene, 1,2,4-Trimethylbenzene, D-Limonene, Undecane, Dodecane, Tridecane, Tetradecane

2.3 Glue Bench - PVE Scrubber

Date	3/09/2025	Client	Henkel Australia Pty Ltd	
Report	R018996	Stack ID	Glue Bench Scrubber	
Licence No.	258	Location	Seven Hills, NSW 2147	
Ektimo Staff	Rick Peralta, Muhammad Usman	State	NSW	
Process Conditions	Please refer to client records.			250822

Stack Parameters			
Moisture content, %v/v	2.6 (saturated)		
Gas molecular weight, g/g mole	28.7 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.28 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.20		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1142 & 1305		
Temperature, °C	22		
Temperature, K	295		
Ambient pressure, kPa	102		
Stack pressure, kPa	102		
Velocity at sampling plane, m/s	7		
Volumetric flow rate, actual, m³/s	1.5		
Volumetric flow rate (wet STP), m³/s	1.4		
Volumetric flow rate (dry STP), m³/s	1.3		
Mass flow rate (wet basis), kg/h	6400		

Gas Analyser Results	Average	
Sampling time	1201 - 1301	
	Concentration % v/v	
Carbon dioxide	<0.4	
Oxygen	20.9	

Isokinetic Results	Results	
Sampling time	1201-1303 (PM10)	
	Concentration Mass Rate mg/m³ g/min	
Fine particulates (PM10)*	<3 <0.2	
D50 cut size, 10µm	9.8	
Isokinetic Sampling Parameters		
Sampling time, min	60	
Isokinetic rate, %	92	
Gravimetric analysis date (PM ₁₀)	09-09-2025	

^{*} Note: Probe wash sample compromised.

Page: 10 of 26

Date Client Henkel Australia Pty Ltd 3/09/2025 Report R018996 Stack ID Glue Bench Scrubber Licence No. 258 Location Seven Hills, NSW 2147 **Ektimo Staff** Rick Peralta, Muhammad Usman State NSW

Please refer to client records.

Process Conditions

Total VOCs (as n-Propane)

Results
1203-1303

Concentration Mass Rate
mg/m³ g/min

Total

6.6 0.54

VOC (speciated) ¹	Results
Sampling time	1203-1303
()	Concentration Mass Rate mg/m³ g/min
Detection limit ²	<0.03 <0.003
Acetone	0.047 0.0038
Ethyl acetate	0.41 0.033
Benzene	<0.03 <0.003
Toluene	4.7 0.38
Residuals as Toluene	1.2 0.099
Vinyl acetate as Toluene*	0.22 0.018

(1) Compounds marked with an asterisk have been semi-quantified (refer to Definitions) and are therefore not covered by the scope of Ektimo's NATA accreditation.

$(2) \ Unless \ otherwise \ reported, \ the \ following \ target \ compounds \ were \ found \ to \ be \ below \ detection:$

Ethanol, Isopropanol, Pentane, 1,1-Dichloroethene, Acrylonitrile, Dichloromethane, trans-1,2-Dichloroethene, Methyl ethyl ketone, n-Hexane, cis-1,2-Dichloroethene, Chloroform, 1,1,1-Trichloroethane,1,2-Dichloroethane, Cyclohexane, Benzene, Carbon tetrachloride, Butanol, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 1-Methoxy-2-propanol, 3-Methylhexane, Heptane, Trichloroethylene, Ethyl acrylate, Methyl methacrylate, Propyl acetate, Methylcyclohexane, Methyl Isobutyl Ketone, 1,1,2 Trichloroethane, 2-Hexanone, Octane, Tetrachloroethene, Butyl acetate, Chlorobenzene, Ethylbenzene, m + p-Xylene, 1-Methoxy-2-propyl acetate, Styrene, o-Xylene, Butyl acrylate, Nonane, 2-Butoxyethanol, Cellosolve acetate, 1,1,2,2-Tetrachloroethane, Isopropylbenzene, alpha-Pinene, Propylbenzene, 1,3,5-Trimethylbenzene, beta-Pinene, tetr-Butylbenzene, Decane, 3-Carene, 1,2,3-Trimethylbenzene, D-Limonene, Undecane, Dodecane, Tridecane, Tetradecane

2.4 PVE - Charcoal Filter

Date	3/09/2025	Client	Henkel Australia Pty Ltd	
Report	R018996	Stack ID	PVE Charcoal Filter	
Licence No.	258	Location	Seven Hills, NSW 2147	
Ektimo Staff	Rick Peralta, Muhammad Usman	State	NSW	
Process Conditions	Please refer to client records.			250822

Stack Parameters			
Moisture content, %v/v	1.8		
Gas molecular weight, g/g mole	28.8 (wet)	29.0 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.29 (dry)	
Gas density at discharge conditions, kg/m³	1.17		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	1224 & 1335		
Temperature, °C	29		
Temperature, K	302		
Ambient pressure, kPa	102		
Stack pressure, kPa	102		
Velocity at sampling plane, m/s	3.3		
Volumetric flow rate, actual, m³/s	0.026		
Volumetric flow rate (wet STP), m³/s	0.024		
Volumetric flow rate (dry STP), m³/s	0.023		
Mass flow rate (wet basis), kg/h	110		

Gas Analyser Results	Average
Sampling time	1234 - 1334
	Concentration % v/v
Carbon dioxide	<0.4
Oxygen	20.9

Isokinetic Results	Results	
Sampling time	1234-1334	
	Concentration Mass Rate mg/m³ g/min	
Solid Particles*	<3 <0.004	
Isokinetic Sampling Parameters		
Sampling time, min	60	
Isokinetic rate, %	100	
Gravimetric analysis date (total particulate)	09-09-2025	

 1 Due to the insufficient port size (1-inch) at the PVE - Charcoal Filter exhaust stack, PM $_{10}$ measurements could not be performed. By definition, PM $_{10}$ (particulate matter <10 microns in aerodynamic size) forms a fraction of total particulate matter (TPM). The approved sampling method used to determine TPM in NSW is EPA TM-15, which can achieve lower concentration detection limits than the method used to determine PM $_{10}$, namely NSW EPA OM-5. On this occasion, due to PVE-Charcoal Filter exhaust stack porthole configuration, Ektimo utilised NSW EPA TM-15 to measure the TPM concentration and thus estimate PM10.

^{*} Note: Probe wash sample compromised.

250822

Date Client Henkel Australia Pty Ltd 3/09/2025 Report R018996 Stack ID **PVE Charcoal Filter** Seven Hills, NSW 2147 Licence No. 258 Location **Ektimo Staff** Rick Peralta, Muhammad Usman State NSW

Please refer to client records.

Process Conditions

Total

Total VOCs (as n-Propane)

Results
1233-1235

Concentration Mass Rate
mg/m³ g/min

160

0.22

VOC (speciated) ¹ Sampling	Results 1233-1235
()	Concentration Mass Rate mg/m³ g/min
Detection limit ²	<0.07 <0.0001
Acetone	1.6 0.0023
Ethyl acetate	15 0.021
Benzene	<0.07 <0.0001
Toluene	0.62 0.00086
Residuals as Toluene	5.3 0.0073
Vinyl acetate as Toluene*	140 0.19

- (1) Compounds marked with an asterisk have been semi-quantified (refer to Definitions) and are therefore not covered by the scope of Ektimo's NATA accreditation.
- (2) Unless otherwise reported, the following target compounds were found to be below detection:

Ethanol, Isopropanol, Pentane, 1,1-Dichloroethene, Acrylonitrile, Dichloromethane, trans-1,2-Dichloroethene, Methyl ethyl ketone, n-Hexane, cis-1,2-Dichloroethene, Chloroform, 1,1,1-Trichloroethane,1,2-Dichloroethane, Cyclohexane, Benzene, Carbon tetrachloride, Butanol, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 1-Methoxy-2-propanol, 3-Methylhexane, Heptane, Trichloroethylene, Ethyl acrylate, Methyl methacrylate, Propyl acetate, Methylcyclohexane, Methyl Isobutyl Ketone, 1,1,2 Trichloroethane, 2-Hexanone, Octane, Tetrachloroethene, Butyl acetate, Chlorobenzene, Ethylbenzene, m + p-Xylene, 1-Methoxy-2-propyl acetate, Styrene, o-Xylene, Butyl acrylate, Nonane, 2-Butoxyethanol, Cellosolve acetate, 1,1,2,2-Tetrachloroethane, Isopropylbenzene, alpha-Pinene, Propylbenzene, 1,3,5-Trimethylbenzene, beta-Pinene, tert-Butylbenzene, 1,2,4-Trimethylbenzene, Decane, 3-Carene, 1,2,3-Trimethylbenzene, D-Limonene, Undecane, Dodecane, Tridecane, Tetradecane

2.5 Radco Oil Heater

Date 3/09/2025 Client Henkel Australia Pty Ltd Report R018996 Stack ID Radco Oil Heater Licence No. 258 Location Seven Hills, NSW 2147 **Ektimo Staff** NSW Rick Peralta, Muhammad Usman State **Process Conditions** Operating Condition: Boiler Modulating (Temp. Settting cut-off 234°C)

Stack Parameters			
Moisture content, %v/v	4.6		
Gas molecular weight, g/g mole	29.0 (wet)	29.5 (dry)	
Gas density at STP, kg/m³	1.29 (wet)	1.32 (dry)	
Gas density at discharge conditions, kg/m³	0.76		
Gas Flow Parameters			
Flow measurement time(s) (hhmm)	0910 & 1040		
Temperature, °C	194		
Temperature, K	467		
Ambient pressure, kPa	102		
Stack pressure, kPa	102		
Velocity at sampling plane, m/s	8.3		
Volumetric flow rate, actual, m³/s	0.41		
Volumetric flow rate (wet STP), m³/s	0.24		
Volumetric flow rate (dry STP), m³/s	0.23		
Mass flow rate (wet basis), kg/h	1100		

Gas Analyser Results		Average	
	Sampling time	0936 - 1036	
Combustion Gases		Concentration Mass Rate mg/m³ g/min	
Nitrogen oxides (as NO ₂)		58 0.8	
Carbon monoxide		36 0.5	
		Concentration % v/v	
Carbon dioxide		5.7	
Oxygen		11.3	

Isokinetic Results	Results
Sampling time	0936-1037 (PM10)
	Concentration Mass Rate mg/m³ g/min
Fine particulates (PM10)*	<3 <0.04
D50 cut size, 10μm	10.2
Isokinetic Sampling Parameters	
Sampling time, min	60
Isokinetic rate, %	95
Velocity difference, % ¹	<1
Gravimetric analysis date (PM ₁₀)	09-09-2025

¹ The Radco Oil Heater oscillates to maintain a set point temperature and as such the velocity of exhaust gas will vary considerably.

^{*} Note: Probe wash sample compromised.

3 Sample Plane Compliance

3.1 Hot Melt Scrubber

Sampling Plane Details

Source tested Exhaust vent Pollution control equipment Filter baghouse Sampling plane dimensions 700 mm 0.385 m² Sampling plane area 4" BSP (x2), 45 mm Sampling port size, number & depth Vertical Circular Duct orientation & shape Exit 3.4 D Downstream disturbance Bend 1.6 D Upstream disturbance No. traverses & points sampled 2 12 Sample plane conformance to AS 4323.1 Non-conforming

The sampling plane is deemed to be non-conforming due to the following reasons:

The upstream disturbance is <2D from the sampling plane

3.2 Hot Melt Belt Cooler Exhaust

Sampling Plane Details

Source tested Exhaust vent Pollution control equipment Filter baghouse Sampling plane dimensions 600 x 830 mm Sampling plane area 0.498 m² Sampling port size, number & depth 4" BSP (x2), 0 mm Duct orientation & shape Vertical Rectangular Downstream disturbance Exit 0.71 D Bend 5 D Upstream disturbance No. traverses & points sampled 1 6 Sample plane conformance to AS 4323.1 Non-conforming

Comments

The number of traverses sampled is less than the requirement

The sampling plane is deemed to be non-conforming due to the following reasons:

The downstream disturbance is <1D from the sampling plane

The stack or duct does not have the required number of access holes (ports)

The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

3.3 Glue Bench - PVE Scrubber

Sampling Plane Details

Exhaust vent Source tested Pollution control equipment Wet scrubber Sampling plane dimensions 520 mm Sampling plane area 0.212 m² 4" BSP (x2), 320 mm Sampling port size, number & depth Duct orientation & shape Vertical Circular Downstream disturbance Exit 4.2 D Upstream disturbance Axial fan 5.3 D No. traverses & points sampled 2 12

Sample plane conformance to AS 4323.1 Conforming but non-ideal

Comments

The gas temperature of the sampling plane is below the dew point

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

3.4 PVE - Charcoal Filter

Sampling Plane Details

Source tested Exhaust vent Activated carbon filtration Pollution control equipment Sampling plane dimensions 100 mm Sampling plane area 0.00785 m² Sampling port size, number & depth 2" BSP (x4), 20 mm Duct orientation & shape Vertical Circular Downstream disturbance Exit 11 D Upstream disturbance Junction 5 D No. traverses & points sampled 1 2

Sample plane conformance to AS 4323.1 Conforming but non-ideal

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

3.5 Radco Oil Heater

Sampling Plane Details

Source tested Exhaust vent Sampling plane dimensions 250 mm Sampling plane area 0.0491 m² 4" BSP (x2), 90 mm Sampling port size, number & depth Duct orientation & shape Vertical Circular Downstream disturbance Exit 1.6 D Inlet 3.6 D Upstream disturbance 2 8 No. traverses & points sampled Sample plane conformance to AS 4323.1 Conforming but non-ideal

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

4 Plant Operating Conditions

The below plant operating conditions have been supplied by Henkel Australia Pty Ltd personnel. See Henkel Australia Pty Ltd records for complete process conditions.

Location	Test Date	Operating Conditions
Hot Melt Belt Cooler Exhaust	02 September 2025	Load: 300 Bags/Batch/5 hours (S130A)
Radco Oil Heater	03 September 2025	Boiler modulating (Temperature setting cut-off 234°C)

5 Test Methods

All sampling and analysis were performed by Ektimo unless otherwise specified. Specific details of the methods are available upon request.

				NATA accredited	
Parameter	Sampling method	Analysis method	Uncertainty*	Sampling	Analysis
Sampling points - Selection	NSW EPA TM-1 (AS 4323.1)	NA	NA	✓	NA
Flow rate, temperature & velocity	NSW EPA TM-2 (USEPA Method 2)	NSW EPA TM-2 (USEPA Method 2)	8%, 2%, 7%	NA	✓
Moisture (stacks < 60°C)	Ektimo 050	Ektimo 050	not specified	✓	√j
Moisture content	NSW EPA TM-22 (USEPA Method 4)	NSW EPA TM-22 (USEPA Method 4)	8%	✓	✓
Molecular weight	NA	NSW EPA TM-23 (USEPA Method 3)	not specified	NA	✓
Dry gas density	NA	NSW EPA TM-23 (USEPA Method 3)	not specified	NA	✓
Carbon dioxide	NSW EPA TM-24 (USEPA Method 3A)	NSW EPA TM-24 (USEPA Method 3A)	13%	✓	✓
Carbon monoxide	NSW EPA TM-32 (USEPA Method 10)	NSW EPA TM-32 (USEPA Method 10)	12%	✓	✓
Nitrogen oxides	NSW EPA TM-11 (USEPA Method 7E)	NSW EPA TM-11 (USEPA Method 7E)	12%	✓	✓
Oxygen	NSW EPA TM-25 (USEPA Method 3A)	NSW EPA TM-25 (USEPA Method 3A)	13%	✓	✓
Speciated volatile organic compounds (VOCs)	NSW EPA TM-34 ^d (USEPA Method 18)	Ektimo 344	19%	✓	√ [†]
Particulate matter (PM ₁₀ & PM _{2.5})	NSW EPA OM-5 (USEPA Method 201A)	NSW EPA OM-5 (USEPA Method 201A)	6%	✓	✓††
Solid particles (total)	NSW EPA TM-15 (AS 4323.2)	NSW EPA TM-15 (AS 4323.2)	3%	✓	✓††
					020925

^{*} Uncertainties cited in this table are estimated using typical values and are calculated at the 95% confidence level (coverage factor = 2).
† Analysis performed by Ektimo. Results were reported to Ektimo on:

^{- 19} September 2025 in report LV-007829.

^{††} Gravimetric analysis conducted at the Ektimo NSW laboratory.

d Excludes recovery study as specified in section 8.4.3 of USEPA Test Method 18.

j Includes analysis of moisture content by Ektimo 050 which uses the same principle as ASTM E337.

6 Deviations to Test Methods

NSW EPA TM-34 (USEPA 18)

Ektimo notes that the sampling and analysis of Volatile Organic Compounds (VOCs), per USEPA Method 18 has excluded the recovery study as specified in Section 8.4.3. Performing the recovery study described in Section 8.4.3 of USEPA Method 18 for analytes present at low levels is problematic. Given this, Ektimo applies a threshold of $50\mu g$ as a lower-bound mass, below which the 'spiking' of specific volatile organic compounds is not performed. For the purposes of this round of monitoring, the following compounds were present above the detection limit (0.1 μg) but were below $50 \mu g$ (unless **bolded**). Therefore, recovery studies for the following analytes were not performed:

Hot Melt Scrubber	•	PVE - Charcoal Filter	r
Acetone	(3.4 µg)	Acetone	(24 µg)
Toluene	(7.5 μg)	Ethyl acetate	(220 µg)
Decane	(1.7 μg)	Toluene	(9 µg)
Dodecane	(1.1 μg)		
Hot Melt Belt Cool	ler Exhaust	Glue Bench Scrubbe	er
Acetone	(1.6 µg)	Acetone	(1.5 µg)
Toluene	(46 µg)	Ethyl acetate	(13 µg)
		Toluene	(150 µg)

Regarding the above compounds, Ektimo refers to guidance within USEPA Method 18 (8.2.4) in relation to choosing appropriate adsorbent tube media for each detected compound above 50 µg.

NIOSH 1300-Ketones I

Acetone is specifically referred as a compound to be sampled under this method, and the recommended adsorbent media for sampling is 'Solid Sorbent Tube, coconut shell charcoal'; Ektimo used the recommended sampling media (SKC brand 226-01). Since the adsorbent media is deemed appropriate by NIOSH 1300, Ektimo opted not to perform the recovery study for this compound.

NIOSH 1501 - Hydrocarbons, Aromatic

Toluene is specifically referred as a compound to be sampled under this method, and the recommended adsorbent media for sampling is 'Solid Sorbent Tube, coconut shell charcoal'; Ektimo used the recommended sampling media (SKC brand 226-01). Since the adsorbent media is deemed appropriate by NIOSH 1501, Ektimo opted not to perform the recovery study for this compound.

NIOSH 1457-Ethyl Acetate

Ethyl Acetate is specifically referred as compounds to be sampled under this method, and the recommended adsorbent media for sampling is 'Solid Sorbent Tube, coconut shell charcoal'; Ektimo used the recommended sampling media (SKC brand 226-01). Since the adsorbent media is deemed appropriate by NIOSH 1457, Ektimo opted not to perform the recovery study for this compound.

NIOSH 1500 - Hydrocarbons, BP 36° - 216°C (Nonane, Decane, Dodecane)

Nonane, Decane and Dodecane are specifically referred as compounds to be sampled under this method. The recommended adsorbent media for sampling is 'Solid Sorbent Tube, coconut shell charcoal'. Ektimo used this recommended sampling media (SKC brand 226-01). Since the adsorbent media is deemed appropriate by NIOSH 1500, Ektimo opted not to perform the recovery study for this compound.

7 Quality Assurance/Quality Control Information

Ektimo is accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources. Unless otherwise stated test methods used are accredited with the National Association of Testing Authorities. For full details, search for Ektimo at NATA's website www.nata.com.au.

Ektimo is accredited by NATA to ISO/IEC 17025 - Testing. ISO/IEC 17025 - Testing requires that a laboratory have adequate equipment to perform the testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Quality Director.

NATA is a member of APAC (Asia Pacific Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through mutual recognition arrangements with these organisations, NATA accreditation is recognised worldwide.

Unless specifically noted, all samples were collected and handled in accordance with Ektimo's QA/QC standards.

Page: 19 of 26

8 Definitions

The following symbols and abbreviations may be used in this test report:

% v/v Volume to volume ratio, dry basis (except moisture)

Approximately
 Less than
 Greater than
 Greater than or e

≥ Greater than or equal to AS Australian Standard

BaP-TEQ Benzo(a)pyrene toxic equivalents

BSP British standard pipe

CEM/CEMS Continuous emission monitoring/Continuous emission monitoring system

CTM Conditional test method

D Duct diameter or equivalent duct diameter for rectangular ducts

D₅₀ 'Cut size' of a cyclone is defined as the particle diameter at which the cyclone achieves a 50% collection efficiency i.e. half of

the particles are retained by the cyclone and half pass through it. The D_{50} method simplifies the capture efficiency distribution by assuming that a given cyclone stage captures all of the particles with a diameter equal to or greater than the D_{50} of that

cyclone and less than the D_{50} of the preceding cyclone. Department of Environment & Climate Change (NSW)

Disturbance A flow obstruction or instability in the direction of the flow which may impede accurate flow determination. This includes

centrifugal fans, axial fans, partially closed or closed dampers, louvres, bends, connections, junctions, direction changes or

changes in pipe diameter.

DWER Department of Water and Environmental Regulation (WA)
DEHP Department of Environment and Heritage Protection (QLD)

EPA Environment Protection Authority
FTIR Fourier transform infra-red

ISC Intersociety Committee, Methods of Air Sampling and Analysis

ISO International Organisation for Standardisation

ITE Individual threshold estimate I-TEQ International toxic equivalents

Lower bound When an analyte is not present above the detection limit, the result is assumed to be equal to zero.

Medium bound When an analyte is not present above the detection limit, the result is assumed to be equal to half of the detection limit.

NA Not applicable

NATA National Association of Testing Authorities
NIOSH National Institute of Occupational Safety and Health

NT Not tested or results not required OM Other approved method

OU Odour unit. One OU is that concentration of odorant(s) at standard conditions that elicits a physiological response from a

panel equivalent to that elicited by one Reference Odour Mass (ROM), evaporated in one cubic metre of neutral gas at

standard conditions.

PM₁₀ Particulate matter having an equivalent aerodynamic diameter less than or equal to 10 microns (µm).
PM₂₅ Particulate matter having an equivalent aerodynamic diameter less than or equal to 2.5 microns (µm).

PSA Particle size analysis. PSA provides a distribution of geometric diameters, for a given sample, determined using laser

diffraction.

RATA Relative accuracy test audit

Semi-quantified VOCs Unknown VOCs (those for which an analytical standard is not available), are identified by matching the mass spectrum of the

chromatographic peak to the NIST Standard Reference Database (version 14.0), with a match quality exceeding 70%. An estimated concentration is determined by matching the area of the peak with the nearest suitable compound in the analytical

calibration standard mixture.

STP Standard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0 °C, at discharge

oxygen concentration and an absolute pressure of 101.325 kPa.

TM Test method

TOC Total organic carbon. This is the sum of all compounds of carbon which contain at least one carbon-to-carbon bond, plus

methane and its derivatives.

USEPA United States Environmental Protection Agency

VDI Verein Deutscher Ingenieure (Association of German Engineers)

Velocity difference
The percentage difference between the average of initial flows and after flows.

Vic EPA Victorian Environment Protection Authority

VOC Volatile organic compound. A carbon-based chemical compound with a vapour pressure of at least 0.010 kPa at 25°C or

 $having\ a\ corresponding\ volatility\ under\ the\ given\ conditions\ of\ use.\ VOCs\ may\ contain\ oxygen,\ nitrogen\ and\ other\ elements.$

VOCs do not include carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts.

WHO05-TEQ World Health Organisation toxic equivalents

XRD X-ray diffractometry

Upper bound When an analyte is not present above the detection limit, the result is assumed to be equal to the detection limit.

95% confidence interval Range of values that contains the true result with 95% certainty. This means there is a 5% risk that the true result is outside this

range

9 Appendices

Appendix A: Site Image

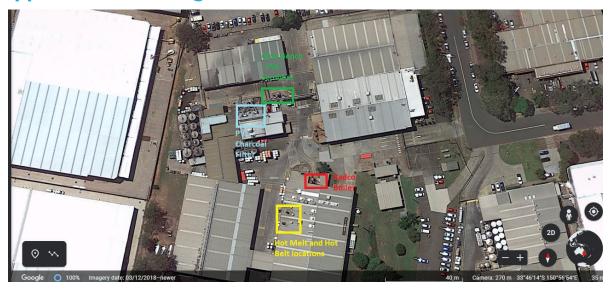
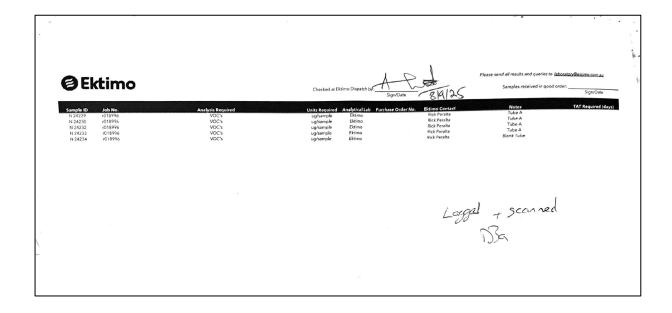



Image 1. Site Map

Appendix B: Chain of Custody

Appendix C: Laboratory Results

+61 2 4003 3296 info@ektimo.com.au ektimo.com.au

ABN 86 600 381 413

CERTIFICATE OF ANALYSIS

Testing Laboratory: Ektimo

26 Redland Drive Mitcham, VIC 3132

Report Number: LV-007829 Job Number: R018996 Date of Issue: 19/09/2025

Henkel Australia Pty Ltd Attention: Address:

Seven Hills NSW 2147

Date samples received: 12/9/2025

Number of samples received: 5

Date samples analysed: 16/09/2025

No of samples analysed:

Test method(s) used:

Ektimo 344

Comments

QC Acceptance Criteria:

Parameter	Criteria	Pass/Fail
Standard Curve	$R^2 > 0.99$	Pass
Range	All samples <110% of highest standard	Pass
Repeat samples	Between 80% - 120%	Pass
Method Blanks	All method blanks < PQL	Pass
QC sample	2 standard deviations of theoretical	Pass
Chemical Expiry	All chemicals within expiry date	Pass

This report supersedes any previous report(s) with this reference. Sample(s) have been analysed as received.

Ektimo is accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources. Unless otherwise stated test

testing a continuous and a secretified with the National Association of Testing Authorities. For full details, search for Ektimo at NATA's website www.nata.com.au.

Ektimo is accredited by NATA (National Association of Testing Authorities) to ISO/IEC 17025 - Testing. ISO/IEC 17025 - Testing requires that a laboratory have adequate equipment to perform the testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Quality Director.

Quality Director.

NATA is a member of APAC (Asia Pacific Laboratory Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through the mutual recognition arrangements with both of these organisations, NATA accreditation is recognised world-wide.

A formal Quality Control program is in place at Estimo to monitor analyses performed in the laboratory and sampling conducted in the field. The program is designed to check where appropriate; the sampling reproducibility, analytical method, accuracy, precision and the performance of the analyst. The Laboratory Manager is responsible for the administration and maintenance of this program.

REPORT AUTHORISATION

Version: 040825

Laboratory Manager

Daniel Balaam Senior Laboratory Chemist

NATA Accredited Laboratory 14601

Accredited for compliance with ISO/IEC 17025. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

Analytical Results

Report No. LV-007829 Job No. R018996 Client Name: Henkel

Parameter	Units	N24229 R018996	N24230 R018996	N24232 R018996	N24233 R018996
	PQL	1	1	1	1
Ethanol	μg	<1	<1	<1	<1
Acetone	μg	1.6	3.4	1.5	24
Isopropanol	μg	<1	<1	<1	<1
Pentane	μg	<1	<1	<1	<1
1,1-Dichloroethene	μg	<1	<1	<1	<1
Acrylonitrile	μg	<1	<1	<1	<1
Dichloromethane	μg	<1	<1	<1	<1
trans-1,2-Dichloroethene	μg	<1	<1	<1	<1
Methyl ethyl ketone	μg	<1	<1	<1	<1
n-Hexane	μg	<1	<1	<1	<1
cis-1,2-Dichloroethene	hа	<1	<1	<1	<1
Ethyl acetate	μg	<1	<1	13	220
Chloroform	μg	<1	<1	<1	<1
1.1.1-Trichloroethane	μg	<1	<1	<1	<1
1,2-Dichloroethane	μg	<1	<1	<1	<1
Cyclohexane	μg	<1	<1	<1	<1
Benzene	ьà	<1	<1	<1	<1
Carbon tetrachloride	μg	<1	<1	<1	<1
Butanol		<1	<1	<1	<1
Isopropyl acetate	hа	<1	<1	<1	<1
2-Methylhexane	μg	<1	<1	<1	<1
2,3-Dimethylpentane	μg	<1	<1	<1	<1
1-Methoxy-2-propanol	μg	<1	<1	<1	<1
3-Methylhexane	μg	<1	<1	<1	<1
Heptane	μg	<1	<1	<1	<1
Trichloroethylene	μg	<1	<1	<1	<1
Ethyl acrylate	μg	<1	<1	<1	<1
	μg	<1	<1	<1	<1
Methyl methacrylate	hā	<1	<1	<1	<1
Propyl acetate	μg	<1	<1	<1	<1
Methylcyclohexane	μg	<1	<1	<1	<1
Methyl Isobutyl Ketone Toluene	hā	46	7.5	150	9
1,1,2-Trichloroethane	μg	46 <1	7.5 <1	<1	<1
	μg				
2-Hexanone	μg	<1	<1	<1	<1
Octane	hд	<1	<1	<1	<1
Tetrachloroethene	μg	<1	<1	<1	<1
Butyl acetate	μg	<1	<1	<1	<1
Chlorobenzene	hā	<1	<1	<1	<1
Ethylbenzene	μg	<1	<1	<1	<1
m + p-Xylene	μg	<1	<1	<1	<1
1-Methoxy-2-propyl acetate	μg	<1	<1	<1	<1
Styrene	μg	<1	<1	<1	<1
o-Xylene	μg	<1	<1	<1	<1
Butyl acrylate	μg	<1	<1	<1	<1
Nonane	μg	<1	<1	<1	<1

^{*} Results marked with an asterisk are outside the acceptable calibration range of the instrument.

NATA Accredited Laboratory 14601

Results page 2 of 5

Analytical Results

Report No. LV-007829 Job No. R018996 Client Name: Henkel

Client Name: Henkel	1	1	1	ľ	l'
Parameter	Units	N24229 R018996	N24230 R018996	N24232 R018996	N24233 R018996
	PQL	1	1	1	1
2-Butoxyethanol	μд	<1	<1	<1	<1
Cellosolve acetate	μg	<1	<1	<1	<1
1,1,2,2-Tetrachloroethane	μg	<1	<1	<1	<1
Isopropylbenzene	μg	<1	<1	<1	<1
alpha-Pinene	μg	<1	<1	<1	<1
Propylbenzene	μg	<1	<1	<1	<1
1,3,5-Trimethylbenzene	μg	<1	<1	<1	<1
beta-Pinene	μg	<1	<1	<1	<1
tert-Butylbenzene	μg	<1	<1	<1	<1
1,2,4-Trimethylbenzene	μg	<1	<1	<1	<1
Decane	μg	<1	1.7	<1	<1
3-Carene	μg	<1	<1	<1	<1
1,2,3-Trimethylbenzene	μg	<1	<1	<1	<1
D-Limonene	μg	<1	<1	<1	<1
Undecane	μg	<1	<1	<1	<1
Dodecane	μg	<1	1.1	<1	<1
Tridecane	μg	<1	<1	<1	<1
Tetradecane	μg	<1	<1	<1	<1
Residuals as Toluene	μg	5.8	550	39	77
Vinyl acetate as Toluene	μд	<1	<1	7	2000

^{*} Results marked with an asterisk are outside the acceptable calibration range of the instrument.

NATA Accredited Laboratory 14601

Results page 3 of 5

Analytical Results

Report No. LV-007829 Job No. R018996 Client Name: Henkel

Parameter	Units	N24234 R018996
	PQL	1
Ethanol	μg	<1
Acetone	μg	<1
Isopropanol	μg	<1
Pentane	μg	<1
1,1-Dichloroethene	μg	<1
Acrylonitrile	μg	<1
Dichloromethane	μg	<1
trans-1,2-Dichloroethene	μg	<1
Methyl ethyl ketone	μg	<1
n-Hexane	μg	<1
cis-1,2-Dichloroethene		<1
Ethyl acetate	μg	<1
Chloroform	μg	<1
1.1.1-Trichloroethane	μg	<1
1,2-Dichloroethane	μg	<1
	μg	<1
Cyclohexane	μg	500
Benzene	μg	<1
Carbon tetrachloride	μg	<1
Butanol	μg	<1
Isopropyl acetate	μg	<1
2-Methylhexane	μg	<1
2,3-Dimethylpentane	μg	<1
1-Methoxy-2-propanol	μg	<1
3-Methylhexane	μg	<1
Heptane	μg	<1
Trichloroethylene	μg	<1
Ethyl acrylate	μg	<1
Methyl methacrylate	μg	<1
Propyl acetate	μg	<1
Methylcyclohexane	μg	<1
Methyl Isobutyl Ketone	µg	<1
Toluene	μg	<1
1,1,2-Trichloroethane	μg	<1
2-Hexanone	μg	<1
Octane	μg	<1
Tetrachloroethene	µg	<1
Butyl acetate	μg	<1
Chlorobenzene	μg	<1
Ethylbenzene	μg	<1
m + p-Xylene	μg	<1
1-Methoxy-2-propyl acetate	μg	<1
Styrene	μg	<1
o-Xylene	μg	<1
Butyl acrylate	μg	<1
Nonane	μg	<1

^{*} Results marked with an asterisk are outside the acceptable calibration range of the instrument.

NATA Accredited Laboratory 14601

Results page 4 of 5

Analytical Results

Report No. LV-007829 Job No. R018996 Client Name: Henkel

Parameter	Units	N24234 R018996	
	PQL	1	
2-Butoxyethanol	μg	<1	
Cellosolve acetate	μg	<1	
1,1,2,2-Tetrachloroethane	μg	<1	
Isopropylbenzene	μg	<1	
alpha-Pinene	μg	<1	
Propylbenzene	μg	<1	
1,3,5-Trimethylbenzene	μg	<1	
beta-Pinene	μg	<1	
tert-Butylbenzene	μg	<1	
1,2,4-Trimethylbenzene	μg	<1	
Decane	μg	<1	
3-Carene	µg	<1	
1,2,3-Trimethylbenzene	μg	<1	
D-Limonene	μg	<1	
Undecane	μg	<1	
Dodecane	μд	<1	
Tridecane	μg	<1	
Tetradecane	μg	<1	
Residuals as Toluene	μg	<1	
Vinyl acetate as Toluene	μд	<1	

^{*} Results marked with an asterisk are outside the acceptable calibration range of the instrument.

Results page 5 of 5

Experts in air quality, odour and emission monitoring.

Melbourne

(Head Office) 26 Redland Dr Mitcham, VIC 3132

Wollongong

1/10 Doyle Ave Unanderra NSW 2526

Brisbane

3/109 Riverside Pl Morningside QLD 4170

Perth

52 Cooper Rd Cockburn Central WA 6164

1300 364 005

ektimo.com.au